

Tetrahedron: Asymmetry 14 (2003) 389-392

TETRAHEDRON: ASYMMETRY

Highly diastereoselective aminoalkylation of naphthols with chiral amines mediated by lithium perchlorate solution in diethyl ether

Mohammad R. Saidi* and Najmoddin Azizi

Department of Chemistry, Sharif University of Technology, PO Box 11345-9516, Tehran, Iran

Received 8 November 2002; revised 11 December 2002; accepted 13 December 2002

Abstract—One-pot, three-component, Mannich reaction of naphthols with in situ prepared imines in 5 M ethereal lithium perchlorate at room temperature affords the corresponding aminoalkylated products in high yields with high diastereoselectivities. The process is exemplified by the reaction of 2-naphthol with (R)-1-phenylethylamine and an aromatic aldehyde in concentrated ethereal lithium perchlorate solution, which affords a highly diastereoselective access to the requisite 2-aminoalkylated product. © 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

New methods for the stereoselective aminoalkylation of electron-rich aromatic compounds are currently of great interest. Although a variety of methods for the aminoalkylation of electron-rich aromatic compounds are available,^{1,2} new direct approaches that are stereoselective and mild enough to allow the preparation of single diastereoisomers are continuously attracting interest.³

The Mannich reaction is one of the most important multi-component reactions in organic synthesis and biosynthesis.⁴ In the course of this three-component aminoalkylation of aldehydes, C–N and C–C single bonds replace the C–O double bond.

Recently, we reported the lithium perchlorate-mediated, one-pot three-component aminoalkylation of aromatic or aliphatic aldehydes with (trimethylsilyl)alkylamines and different nucleophiles, including electron-rich aromatic compounds.⁵ Herein we describe an efficient, straightforward and diastereoselective method for the aminoalkylation of naphthols with chiral amines mediated by lithium perchlorate solution in diethyl ether.

2. Results and discussion

In concentrated ethereal lithium perchlorate solution, aldehyde 1 and enantiopure (*R*)-1-phenylethylamine 2 (also readily available commercially as the (*S*) enantiomer) produce the imine 3 as an intermediate at room temperature. Upon addition of β -naphthol or α -naphthol to the reaction mixture, aminoalkylated products 4a-k were formed in moderate to high yields and with diastereoselectivity (dr) from 75 to 99% (Tables 1 and 2).

When a mixture of aromatic aldehyde 1, (R)-1phenylethylamine, **2**, and β -naphthol, in a molar ratio of 1.0:1.5:1.0, was stirred under an argon atmosphere in 5 M ethereal lithium perchlorate solution at room temperature for 4 h, the desired aminoalkylnaphthol was produced in 20% yield. Reaction of a mixture of aromatic aldehvde 1. (*R*)-(trimethylsilyl)-1-(phenylethyl)amine and β -naphthol, in a molar ratio of 1.0:1.5:1.0, gave very similar results. When a mixture of 1, 2 and trimethylsilylchloride (TMSCl) in a molar ratio of 1.0:1.5:0.5, respectively, were stirred for 15 min in ethereal lithium perchlorate solution (4 mL, 5 M) at room temperature under an argon atmosphere, presumably the imine 3, is formed. By addition of 1 equiv1 of β -naphthol into the reaction mixture and stirring at room temperature for 6 h the 1-aminoalkyl-2-naphthol was produced in >75% yield with a diastereomeric purity of >99%, (Scheme 1, Table 1). The diastereo-

0957-4166/03/\$ - see front matter @ 2003 Elsevier Science Ltd. All rights reserved. PII: S0957-4166(02)00863-7

^{*} Corresponding author. E-mail: saidi@sharif.edu

Table 1. $LiClO_4$ -mediated stereoselective aminoalkylation of 2-naphthol with chiral amine

Entry Aldehyde	Product		% Yield	dr ^{ref}
1 CHO	Ph Ph N H Me	(<i>R</i> , <i>R</i>)-4a	75	99:1 ^{3a}
2 CHO	Ar Ph N. H O-H Me	$Ar = 4-C1C_6 H$ $(R,R)-4b$	I ₄ 78	99:1 ^{3a}
3 O ₂ N CHO	$Ar = 3 - NO_2 C_6 H_4$	(<i>R</i> , <i>R</i>)-4c	70	90:10 ^{3a}
4 CI CI	Ar= 2,4-di-ClC ₆ H ₄	(<i>R</i> , <i>R</i>)-4d	70	95:5 ^{3b}
5 NC CHO	$Ar = 4-NCC_6H_4$	(<i>R</i> , <i>R</i>)-4e	72	95:5 ³⁰
6 CHO	$Ar = 4-BrC_6H_4$	(<i>R</i> , <i>R</i>)-4f	60	93:7 ^{3f}
7 MeO	Ar= 4-MeOC ₆ H ₄ Ph	(<i>R</i> , <i>R</i>)-4g	55	75:25 ^{3a}
8 CHO	Ph NHM O'H	e (<i>R</i> , <i>R</i>)-4h	60	88:12 ^{3d}

The dr values were determined by ¹H NMR of the crude reaction mixture.

meric purity was determined by ¹H NMR analysis of the product. Completing the reaction over longer times and under different conditions did not effect any improvement in the yield of the 1-aminoalkyl-2-naphthol.

Addition of 1 equiv. of α -naphthol instead of β -naphthol into the mixture of **1**, **2** and trimethylsilyl chloride in a molar ratio of 1.0:1.5:0.5, respectively in 5 M

ethereal lithium perchlorate solution at room temperature under an argon atmosphere, gave the 2aminoalkyl-1-naphthol in 40% yield (Table 2, entries 1–3). In this case the dr was lower than for the β aminoalkylnaphthols. With isobutyraldehyde, low conversion and dr was observed (20% yield with a diastereomeric purity of 45–55%). When the pre-formed imine **3** was used in a two-step process in ethereal LiClO₄ or with Lewis acids such as BF₃-ether, ZnBr₂ or

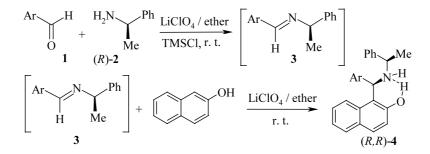
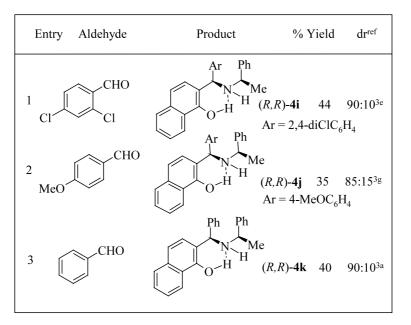
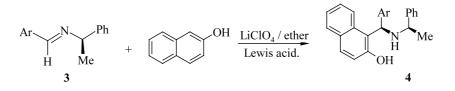




Table 2. $LiClO_4$ -mediated stereoselective aminoalkylation of 1-naphthol with chiral amine

The dr values were determined by ¹H NMR of the crude reaction mixture.

Scheme 2.

AlCl₃, the dr was not improved and the overall yields of the aminoalkylated products **4** were lower in comparison with the one-pot reaction in the presence of TMSCl (Scheme 2).

The structure of compounds 4a-k were confirmed by their spectral data and were characterized by comparison of IR, NMR (¹H and ¹³C) and MS spectra with those reported in the literature.³

In summary, a one-pot, three-component diastereoselective aminoalkylation of 2-naphthol and 1-naphthol has been achieved in good to moderate yields and with very high to moderate selectivity.

3. Experimental

3.1. General procedure for diastereoselective aminoalkylation of 2-naphthol

A mixture of benzaldehyde (2 mmol, 0.21 g), (R)-(+)-1phenylethylamine (3 mmol, 0.36 g), and 5 M LiClO₄ in diethyl ether (4 mL) were placed in a 50 mL flask under argon and stirred for 15 min at room temperature. TMSCl (1 mmol) was added via a syringe. After the addition of TMSCl, a white solid was formed. Then 2naphthol (2 mmol, 0.29 g) was added. Following the progress of the reaction by TLC and ¹H NMR, the reaction mixture was stirred at room temperature for 6 h. Water (20 mL) and dichloromethane (20 mL) were added. The organic phase was separated, dried over MgSO₄, and the solvent was removed using a rotary evaporator. The crude product was further purified by column chromatography on basic alumina eluting with petroleum ether/ethyl acetate. All compounds were characterized on the basis of spectroscopic data (IR, NMR, MS) by comparison with those reported in the literature.³ The same procedure was used for the diastereoselective aminoalkylation of 1-naphthol.

3.2. Selected spectroscopic data for the major diastereoisomers

4a:^{3a} ¹H NMR (500 MHz, CDCl₃): δ 1.55 (d, J=6.8 Hz, 3H), 2.22 (br s, 1H), 3.95 (m, 1H), 5.51 (s, 1H), 7.22–7.80 (m, 16H), 13.80 (br s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 23.4 (CH₃), 56.9 (CH), 60.6 (CH), 113.2, 120.4, 121.3, 122.7, 126.7, 127.7, 127.9, 128.1, 128.9, 129.0, 129.1, 129.3, 130.0, 130.1, 133.0, 141.9, 143.5, 157.7. IR (KBr), 3220, 1080, cm⁻¹.

4c:^{3a} ¹H NMR (500 MHz, CDCl₃): δ 1.57 (d, J=6.9 Hz, 3H), 2.31 (br s, 1H), 3.91 (q, J=6.9 Hz, 1H), 5.94 (s, 3H), 7.13–8.25 (m, 15H), 13.65 (br s, 1H); ¹³C NMR

(125 MHz, CDCl₃): 23.6 (CH₃), 57.9 (CH), 60.1 (CH), 112.4, 120.1, 121.2, 123.7, 127.2, 127.4, 128.4, 128.8, 129.3, 129.7, 130.5, 132.6, 134.4, 142.9, 142.6, 149.0, 158.0. IR (KBr), 3283, 1210, cm⁻¹.

4k:^{3a} ¹H NMR (500 MHz, CDCl₃): δ 1.54 (d, J=6.8 Hz, 3H), 2.32 (br s, 1H), 3.94 (q, J=6.8 Hz, 1H), 4.85 (s, 1H), 7.04–7.89 (m, 16H), 12.90 (br s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 23.8 (CH₃), 56.8 (CH), 65.6 (CH), 116.1, 118.4, 119.3, 120.9, 123.3, 125.3, 126.7, 127.2, 127.8, 128.1, 128.3, 129.4, 129.6, 134.3, 142.8, 143.7, 149.0, 154.9. IR (KBr), 3380, 1095, cm⁻¹.

Caution: Although we did not have any accidents while using LiClO_4 , it is advisable to dry lithium perchlorate in a fume hood using a suitable lab-shield.

Acknowledgements

We are grateful to the Ministry of Science, Research and Technology for financial support. We also thank 'Volkswagen-Stiftung, Federal Republic of Germany' for financial support towards the purchase of equipment and chemicals.

References

 (a) Grumbach, H.-J.; Arend, M.; Risch, N. Synthesis 1996, 883; (b) Arend, M.; Westermann, B.; Risch, N. Angew. *Chem., Int. Ed.* **1998**, *37*, 1044; (c) Katritzky, A. R.; Abdel-Fattah, A. A. A.; Tymoshenko, D. O.; Belyakov, S. A.; Ghiviriga, I.; Steel, P. J. *J. Org. Chem.* **1999**, *64*, 6071.

- (a) Sharifi, A.; Mirzaei, M.; Naimi-Jamal, M. R. Monatsh. Chem. 2001, 132, 875; (b) Saidi, M. R.; Azizi, N.; Naimi-Jamal, M. R. Tetrahedron Lett. 2001, 42, 8111.
- (a) Cimarelli, C.; Mazzanti, A.; Palmieri, G.; Volpini, E. J. Org. Chem. 2001, 66, 4759; (b) Chi, K.-W.; Ahn, Y.-S.; Shim, K. T.; Park, T. N.; Ahn, J. S. Bull. Korean Chem. Soc. 1999, 20, 937; (c) Palmieri, G. Tetrahedron: Asymmetry 2000, 11, 3361; (d) Palmieri, G. Eur. J. Org. Chem. 1999, 805; (e) Cimarelli, C.; Palmieri, G. Tetrahedron 1998, 54, 15711; (f) Zhang, L.-C. Org. Lett. 2001, 3, 2733; (g) Cardellicchio, C.; Ciecarella, G.; Naso, F.; Perna, F.; Tortorreka, P. Tetrahedron 1999, 55, 14685.
- (a) Encyclopedia of Reagents for Organic Synthesis; Paqett, L. A., Ed.; Wiley: UK, 1995; Vol. 4, p. 2582; (b) Tramontini, M.; Angiolini, L. Tetrahedron 1990, 46, 1791; (c) Heaney, H. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 2, pp. 953–957; (d) Loh, T.-P.; Wei, L.-L. Tetrahedron Lett. 1998, 39, 323; (e) Katritzky, A. R.; Fan, W.-Q.; Long, Q.-H. Synthesis 1993, 229.
- (a) Saidi, M. R.; Khalaji, H. R.; Ipaktschi, J. J. Chem. Soc., Perkin Trans. 1 1997, 1983; (b) Saidi, M. R.; Khalaji, H. R. J. Chem. Res. (S) 1997, 340; (c) Naimi-Jamal, M. R.; Mojtahedi, M. M.; Ipaktschi, J.; Saidi, M. R. J. Chem. Soc., Perkin Trans. 1 1999, 3709; (d) Naimi-Jamal, M. R.; Ipaktschi, J.; Saidi, M. R. Eur. J. Org. Chem. 2000, 1735; (e) Saidi, M. R.; Azizi, N.; Zali-Boinee, H. Tetrahedron 2001, 57, 6829; (f) Saidi, M. R.; Azizi, N. Synlett 2002, 1347.